

0040-4039(94)01243-1

Thiadiphosphetane Disulfide as a Metal Extractant Which Shows High Ag+ Selectivity

Masaaki Yoshifuji^{†*}, Kozo Toyota[†], Kotaro Shirabe[†], Hideshi Iki, Takeshi Nagasaki, and Seiji Shinkai^{*}

[†]Department of Chemistry, Faculty of Science, Tohoku University, Aoba, Sendai 980-77, Japan Department of Chemical Science and Technology, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan

Abstracts: It was shown that cis-2,4-bis(2,4,6-tri-tert-butylphenyl)-1,2,4-thiadiphosphetane 2,4disulfide (1) acts as an excellent Ag⁺-selective extractant. Two-phase solvent-extraction and spectral examination with ¹H and ³¹P NMR established that 1 forms a 1:1 complex with Ag⁺ using the P(=S)-S-P(=S) linkage designed in the rigid four-membered ring.

The metal recognition is achieved by a skillful combination of the "ion-size selectivity" with an ingenious selection of atoms and a spatial arrangement of those atoms. We recently synthesized *cis*-2,4-bis(2,4,6-tri-*tert*-butylphenyl)-1,2,4-thiadiphosphetane 2,4-disulfide (1): the X-ray analysis disclosed that 1 has aromatic rings arranged like pincettes and an open space surrounded by three soft S atoms.¹ This structural characteristics strongly tempted us to apply 1 as a metal extractant, particularly that for soft metal ions. Examination with a two-phase solvent-extraction system has established that as expected, 1 shows the high affinity as well as the high selectivity toward $Ag^{+,2,3}$

Two-phase solvent-extraction was carried out at 25 °C with an aqueous solution (25 ml, [metal salt] = 1.1×10^{-4} mol dm⁻³, pH 5.3 with 0.1 mol dm⁻³ acetate buffer) and a chloroform solution (5 ml, [1] = 5.5×10^{-4} mol dm⁻³). The mole ratio of the metal salt in the aqueous phase and 1 in the organic phase is 1:1. After

shaking for 12 h, the concentration of metal salts in the aqueous phase was analyzed by atomic absorption spectroscopy. The extractability (Ex%) was defined as $[Ag^+]_{org} / [Ag^+]_{total}$. The results are summarized in Table 1. It is seen from Table 1 that 1 has the very high affinity for Ag⁺ and the moderate affinity for Pd²⁺ and UO₂²⁺ whereas transition metal ions such as Cu²⁺, Ni²⁺, and Fe³⁺ were scarcely extracted. We surveyed the past literatures on the "metal preference" of analogous extractants. Dialkyl sulfides show the high affinity for Pd²⁺.⁴ "Hard" phosphorous oxides show the high affinity for "hard" UO₂²⁺.⁵ On the other hand, trialkylphosphine sulfides show the "metal preference" similar to 1 (*i.e.*, Ag⁺ > Pd²⁺ > transition metal ions).⁶ The results manifest that in 1 the essential functional group used for metal-binding is the P=S group but not the -S- group. It is now clear that 1 acts as a useful Ag⁺-selective extractant because of the P=S Ag⁺ interaction.

Table 1. Extraction of transition metal cation by 1.

Metal Salt	Ex%
Cu(NO ₃) ₂	trace
Ni(NO ₃) ₂	trace
Fe(NO3)3	trace
Fc(NO3)3	42.1 ^b
AgNO ₃	86.6
AgNO ₃	98.4 ^b
PdCl ₂	8.3
PdCl ₂	14.2 ^b
K4[UO2(CO3)3]	15.2 ^c

a pH = 5.3 with 0.1 mol dm⁻³ acetate buffer.

b Toluene was used as an organic phase.

° pH = 5.9 with 0.01 mol dm⁻³ acetate buffer.

Fig. 1. Plot of Ex% vs. [Ag⁺]/[1] in two-phase solventextraction. 1 (5.5 x 10⁻⁴ mol dm⁻³) was maintained constant.

Subsequently, we estimated Ag⁺-extraction properties more in detail. Fig. 1 shows a plot of Ex% against $[Ag^+] / [1]$ (where [1] is maintained constant). The Ex% is almost saturated at $[Ag^+] / [1] = 1.0$, indicating that the extracted species has 1:1 stoichiometry. However, the plot shows a sigmoidal curve but not a simple saturation curve. Probably, this peculiar dependence is caused by the aggregation of AgClO₄ in chloroform.

In ³¹P NMR spectroscopy the δ_P (46.3 ppm in C₆D₆ at 25 °C in the absence of AgClO₄) shifted to lower magnetic field and was saturated at 62.2 ppm. Fig. 2 shows a plot of δ_P against [Ag⁺] / [1]: the shift saturation occurs at [Ag⁺] / [1] = 1.0 and the sigmoidal dependence is again observable at [Ag⁺] / [1] = 0 ~ 1.0 region. In ¹H NMR spectroscopy (in C₆D₆ at 25 °C) the PCH₂P methylene protons appear at 4.41 and 4.77 ppm. To assign the geminal protons we measured NOE with respect to the *tert*-Bu protons but failed because of the weak correlation. As shown in Fig. 3, the δ_H at higher magnetic field shifts to higher magnetic field while the δ_H at lower magnetic field shifts to lower magnetic field as the Ag⁺ concentration increases. The breakpoints are again observed at [Ag⁺] / [1] = 1.0. According to the X-ray structure of 1,¹ the distance between the two S atoms is 4.51 Å. Even though taking the van der Waals radius of S (1.80 Å), this distance is a little too long to tweeze Ag⁺ (radius 1.15 Å) with the two S atoms. It is reasonable to consider, therefore, that upon the Ag⁺ binding the two P=S groups are a little expanded and consequently the aromatic ring pincettes are closed. In this motion one of the two PCH₂P protons is shielded and the other deshielded.

Fig. 2. Plot of δp vs. [Ag⁺] / [1] in C₆D₆ at 25 °C.

Fig. 3. Plots of δ_H for the two PCH₂P methylene protons vs. [Ag⁺] / [1] in C₆D₆ at 25 °C.

In conclusion, the present paper reveals that the P(=S)-S-P(=S) linkage designed in a rigid fourmembered ring serves as an excellent Ag⁺-selective extractant forming a 1:1 complex. This is a new and unique entry for the Ag⁺-selective metal receptor.

References

- 1. Toyota, K.: Yoshifuji, M.; Hirotsu, K. Chem. Lett., 1990, 643.
- For extraction of heavy metal ions with "soft"-atom-containing extractants see Beamish, F. E.; Talanta, 14, 991, 1967; Mojaki, M. Chemia Analityczna, 24, 207, 1979; Gindin, L. M. Ion Exchange and Solvent Extraction; Marinsky, J. A.; Marcus, Y., Eds.; Marcel Dekker: New York, 1981, Vol. 8, p. 311.
- For Ag⁺-selective extractants see Blake, A. J.; Reid, G.; Schröder, M. J. Chem. Soc., Chem. Commun., 1992, 1074; Clarkson, J.; Yagbasan, R.; Blower, P. J.; Rawle, S. C.; Cooper, S. R. *ibid.*, 1987, 950; Sato, M.; Kubo, M.; Ebine, S.; Akabori, S. Bull. Chem. Soc. Jpn., 57, 421, 1984, and references cited therein. They are thiacrown ether derivatives.
- Nikolaev, A. V.; Torgov, V. G.; Mikhailov, V. A.; Andrievski, V. N.; Bakovets, K. A.; Bondarenko, M. F.; Gil'bert, E. N.; Kotlyarevskii, I. L.; Mardezova, G. N.; Shatskaya, S. S. Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Khim. Nauk, 9, 54, 1970.
- Pozas-Tormo, R.; Moreno-real, L.; Martinez-Lara, M.; Bruque-Gamez, S. Inorg. Chem., 26, 1442, 1987; Cromer, D. T.; Ryan, R. R.; Karthikegar, S.; Paine, R. T. Inorg. Chim. Acta, 172, 165, 1990.
- 6. Hitchcock, R. B.; Dean, J. A.; Handley, H. Anal. Chem., 35, 254, 1963.

(Received in Japan 31 March 1994; accepted 28 May 1994)